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Effect of a uniform bias force on the Brownian movement in double-well potentials
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A general property of the Brownian motion in a bistable potential with the asymmetry arising from the
imposition of a bias force is described. The property is that, at values of the bias force far less than the critical
value required to destroy the bistable nature of the potential, the relaxation process may come to be dominated
by fast intrawell modes rather than ttedow overbarrier relaxation mode. The effect manifests itself in the
pronounced departure of the inverse of the smallest eigenvalue of the Fokker-Planck equation from the relax-
ation time. The phenomenon is illustrated by two examgdl®4063-651X97)11804-9

PACS numbegps): 05.40:+j, 05.60+w, 76.20+q

I. INTRODUCTION cess involved, contains contributions from all the eigenval-
ues of the FPE and is related to the escape rate over the

The Brownian motion in bistable potentials is a crucial potential barrier. In the magnetic probld®,6] 7 is the cor-
factor in the thermally activated switching behavior of sys-relation time of the normalized equilibrium ACF of the mag-
tems which may exist in either of two stable states. We mennetization of the particle. In the chemical reaction problem
tion [1,2] a chemical reaction where two distinct chemical[4,5] 7 is the correlation time of the normalized ACF of the
species are separated by(iaterna) potential barrier; the reaction coordinatéposition. The asymptotic behavior af
reaction being modelefil,2] by thermally activated diffu- is often similar tox; * showing that the relaxation process is
sion over the barrier. Another example is a fine single dogominated by the “long lived” barrier crossing mode.
main ferromagnetic particle with uniaxial anisotropy so pos-\arked differences occur, however, in the magnetic problem
sessing two stable magnetic staf2s3,6. Orientation of the i 5 srong external uniform bias field is applied along the
magnetization of such a particle may undergo a revéi®al  gpisotropy axis. Herer will diverge exponentially from
cross the anisotropy internal potential barridue to thermal )\Il in the high anisotropy(low temperaturg limit [3,6].

agitation. The stochastic dynamics of the chemical prOblenMoreover such behavior occurs at a critical vahyeof the

in the high dampingnoninertia) limit will be governed by . . o . : .
the Smoluchowski equation in the reaction coordinated@tio h, i.e., bias field parameter-anisotropy barrier height

[1,4,5. In the magnetic problem the inertia of the particle Parameter,far less than the value needed to destroy the

plays no role; thus the relaxation is governed by a Fokker-t_"sf[able nature gf the potentl.al. Thus in the Iovy temperature
Planck equationFPB in the space of orientations of the limit the relaxation process is no longer cjommatgd by the
magnetization only. slow decay mode associated with the barrier crossing at val-

In both problems the time to cross the potential barrietues ofh in excess of the critical value. The phenomenon was
(mean first passage timén the high barrierlow tempera- first noted for the magnetic problem in R¢6] and later
ture) limit may be obtained from the inverse of the smallestexplained by Garaniri3]. He showed that it is a natural
nonvanishing eigenvalue, of the Sturm-Liouville equation consequence of the depletion of the shallower of the two
associated with the appropriate FPE. Thus the barrier crospotential wells by the uniform field. Thus at low tempera-
ing process in the high barrier limit is described bgiagle  tures the fast modes in the deeper well may come to domi-
eigenmodef the FPE. nate the relaxation.

Yet another quantity describing the relaxation process is In this paper we prove that the uniform bias force effect
[1,3] the correlation timerwhich is defined as the area under always exists in relaxation in one-dimensional bistable po-
the curve of the normalized autocorrelation functié®CF)  tentials and we assert that such an effect is a general feature
C(t) of the appropriate dynamic quantity. The correlationof relaxation in biased double-well potentials. We bolster our
time, which is a global characterization of the relaxation pro-conclusions by illustrating the effect for the two disparate

examples of relaxation in a biased 2-4 potential and orienta-
tional relaxation in a biased uniaxial anisotropy potential
*Corresponding author. given below.
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Il. RELAXATIONAL DYNAMICS OF A BROWNIAN
PARTICLE IN A BIASED DOUBLE-WELL POTENTIAL

The one-dimensional noninertial translational Brownian

motion of a particle in a double-well potentisl(x) is gov-
erned by the noninertial Fokker-PlandSmoluchowsKi
equation for the probability distribution functiow/ of the
position which is[1]
aW—aWaV—FkTaZW 1

EatW=ax Wi e W @
where{ is the friction coefficientk is the Boltzmann con-
stant, andr is the absolute temperature.

The quantities of interest are the positional ACF

C(1) = (x(0)x(t))o—(x(0))3, 2
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FIG. 1. Double-well potential with local minima at, and x¢
and a local maximum atg .
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where the symbo{ ), designates the equilibrium ensemble Recognizing that the partition functian is the sum of the

average, and the correlation time

1 0
T= m fo C(t)dt

A general equation for the correlation timdor a system
governed by Eq(1l) has been given by RiskgRRef.[1], Eq.
(S9.19)

)

. eBV()

B -
— Z[(x*)o—(X)o] f—oc

X , 2
xf (X" = {(x)g)e AVdx’ | dx, (4
where
© 1 )
7= J e7BV(X)dX, <X>0=2 J XefﬁV(X)dX,
1 ©
(=5 | e Pax, )

andB=(kT) 1.

contributions due to the two potential wells and applying the
steepest descent method to the evaluatiod,ofve obtain

Ag e U0~V =hxa=xc)] U”(XA)) "
Awell (1_2/77) U”(XC)
4 4 [U"(xa)\ M2 U”(x
X ——l"‘_( //( A) ”( A) ' (9)
7 \U"(Xc) U"(xc)

According to the Kramers’ escape rate theory the inverse
of the smallest nonvanishing eigenvalue has exponential de-
pendence on the barrier heidhi, viz.,

Np 1~ eelU(xe)~Uixo)+hixe—xp)], (10
Thus

AB)\Il/Aweu” eoTU(xg) +U(xa) ~2U(xc) +h(2xc—Xg—Xa)]
(11)

Now the argument of the exponential, viz.,
o[U(x) +U(Xa) —2U(Xc) +h(2xc—Xg—xa)], (12

may change its sigrat some critical value dfi,. This is the

For the purpose of our discussion we consider a biasedrucial fact underpinning all that follows. Thustit<h. the

double-well potential

BV(x)=o[U(x)—hx], (6)
with a maximum akg and minima ak, andx: and without
loss of generality we leV(x¢c)>V(x,) (see Fig. 1
At low temperaturegso>1) C(t) may be approximated by
two exponentials
C(t)%AWe"eit/Twe”‘FABeit)\l,

()

quantity Agh; 1/Awe" increases exponentiallps the tem-
peratureT decreases and so completely determines the tem-
perature dependence of the correlation timéf h>h_, on

the other hand, the quantiryB)\IllAwe” decreases exponen-
tially as T decreases, thusno longer has Arrhenius behav-
ior. At this critical value of the bias parameter the relaxation
switches from being dominated by the behavior of the small-
est nonvanishing eigenvalue, to being dominated by the
fast relaxation processes in the deep well of the potential
because of the depletion of the upgshallow well at low

wherer,q is the relaxation time in the deep well, and so hastemperature$3]. We shall now demonstrate that this behav-

a weak temperature dependenae,is the smallest eigen-

ior occurs at values df such that the double-well structure

value of the Sturm-Liouville equation associated with the©f the potential still persists.

FPE and so has Arrhenigsxponentigl temperature depen-
dence, and correspondingly,e>Ag. These two exponen-
tials correspond tintrawell and overbarrier relaxation pro-
cesses. According to E43)

As a definite example consider the double-well potential

g
BV(x)= 7 [x*—4x%—hx], (13
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FIG. 2. Potential 8V(x)/o=—hx—4x?>+x* from Eq. (13) as
a function ofx for various values of the bias parameter0 (curve
1), 1 (curve 2, 2 (curve 3, 3 (curve 4, and 16/2/27 (curve 5.

wherex is a dimensionless coordinate ahds the bias pa-
rameter. Ath=0 the potential Eq(13) is symmetrical and

has a barrier ak=0 where the potential has a maximum

with height relative to the minimum equal @ (in dimen-
sionless units
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FIG. 3. In(#/B¢) calculated from Eqsi4) and(13) as a function
of o for various values oh: 0 (curve 1, 0.5(curve 2, 0.95(curve
3), 1.2(curve 4, 2 (curve 5, and 4.5(curve 6.

Ag

)\Il Nea[l—(S/Z\/i)h] (19)

well

alters its behavior from exponential increase to exponential
decrease ai ~2v2/3~0.943.

The relaxational dynamics in this case are well known

(see, e.g., Ref$4,5]) and may be described as follows. The
correlation time for all barrier height parameters is given by

Eq. (4) with (x)o=0 [4]. In the low temperaturé¢high bar-
rier) limit the ACF may be approximated ky,5]

C(t)~Ayee Vwel+ Age™ ™1, (14)
where
_, TRLUXP)ee”
Twel = BL(OC)o= (Xen), 7\11~%, (19
Aweu“<x>5vena AB”<X2>0_<X>3\/ena (16)

and(x)ye is the average of in one of the wellge.g., over

the range 8 x< ). Thus 7 has the pronounced Arrhenius

behavior

Ag
Awell

I Vi ~e’. (17)

Forh#0 the potential becomes asymmetritsge Fig. 2

Moreover, the double-well structure of the potential disap-

pears at

h=hg=1612/27~4.354 65. (18)

Ill. ORIENTATIONAL RELAXATION
IN A BIASED POTENTIAL

The FPE for the probability distribution functidif of the
orientations of magnetization of an assembly of single do-
main ferromagnetic particles [2]

0
((Sinﬁ)W— V)

o T P90
7o sind 99 E]

. J
+Wﬁ ((smﬂ) %W), (20

where 7 is a characteristi¢Neel) relaxation time. We note
that the FPE20) is similar to the noninertial Smoluchowski
equation for the probability distribution functiow/ of the
orientations of a polar molecule in nematic liquid crystals in
the mean field approximatigr3]

In applications of linear response theory to dielectric and
magnetic relaxation the quantity of interest is the dipole mo-
ment equilibrium ACH 2]

C(t)=((cos?)(0)(cosd)(1))o—((cosd)(0))§, (21)

which describes the step-off linear response of polarization
and magnetization. The correlation timefor an arbitrary

Now the correlation time is also given by the exact Eq.axially symmetrical potentiaV is [3,7]

(4). The results of the exact calculationoére shown in Fig.

3. It is apparent that ceases to have Arrhenius behavior at
values ofh that are considerably smaller than the critical
parametehg of Eq. (18). Furthermore, one can see in Fig. 3

that for agiven shape of the potentiéh=cons} the behav-

ior of 7may dramatically alter from exponentially increasing

to exponentially decreasingee curve % Applying the ap-
proximate treatment of Sec. Il by means of Efjl) we see
that

_ 27'0
~ Z[(cos9)o—(cos)g]

T

1
f eBV(@
-1

z , 2
f (2’ —(cosd))e PV )dz
-1

X dz 22
_221 ( )

where
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where

70
el 3 (14h)’

N1t~ romtoem3%(1+3h)e” 172N+ O(h?),
Ag/Aye=160%e 47"+ 0O(h?).

Thus A
)\1—1 B ~ go(1-6h) (26)
AweII

alters its behavior from exponential increase to exponential
decrease ai.~1/6~0.166 67[3], which is again consider-
FIG. 4. In(#/ 1) calculated from Eqs22) and(24) as a function  ably smaller thamg. This is in agreement with the originally
of o for different values oh: 0 (curve 9, 0.1(curve 2, 0.17(curve  reported value oh, [6].
3), 0.25(curve 4, 0.5(curve 9, and 1(curve 6. The above results may be used for the evaluation of the
linear response of diverse physical systems. In particular,
7 V) 1 _ V() they can be applied with a small modification to the calcula-
) z, (cosh)o=5 iy dz, tion of the linear dielectric response of nematic liquid crys-
tals and systems of polar and polarizable molecules in a
<005219>O:£ fl 226~ BV(24z. 23) strong dc bias field and to the corresponding magnetic re-
ZJ_1 sponse of an assembly of single domain ferromagnetic par-
ticles. In all cases the longitudinal relaxati¢dielectric and
As an example consider the simplest uniaxial potential magnetic, respectivelyof these systems is governed by the
5 FPE with the uniaxial potential given by E4) and appro-
BV(z)=—0(z°+2hz) (z=cos?), (24 priate interpretation of the parameters, h, and o (for de-
ails see Refd.8—12). Finally we remark thaton account of
he linear response thegrthe bias field effect is of particular
significance for the linear alternating curréat) response of
articles in a bistable potential. It appears that even for a
ery small change ih near the critical value df that there
. ) will be a marked change in the ac response as the relaxation
tential becomes asymmetrical and the double-well Structurg, visches from being dominated by the low-frequency barrier

disappears at=hs=1. crossing mode to the high-frequency modes associated with
The relaxational dynamics have been investigated in det g g d y

. . the intrawell relaxatior(e.g., Ref[6]).

tail in Refs.[6,3] and may be described as follows. The e.g (6D

correlation timer is given by the exact Eq22). The results ACKNOWLEDGMENTS
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