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Effect of a uniform bias force on the Brownian movement in double-well potentials
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Centre d’Études Fondamentales, Universite´ de Perpignan, 52 Avenue de Villeneuve, 66860 Perpignan Cedex, France

and Institute of Radio Engineering and Electronics of the Russian Academy of Sciences,
Vvedenskii Square 1, Fryazino, Moscow Region, 141120, Russian Federation

~Received 30 September 1996!

A general property of the Brownian motion in a bistable potential with the asymmetry arising from the
imposition of a bias force is described. The property is that, at values of the bias force far less than the critical
value required to destroy the bistable nature of the potential, the relaxation process may come to be dominated
by fast intrawell modes rather than theslow overbarrier relaxation mode. The effect manifests itself in the
pronounced departure of the inverse of the smallest eigenvalue of the Fokker-Planck equation from the relax-
ation time. The phenomenon is illustrated by two examples.@S1063-651X~97!11804-9#

PACS number~s!: 05.40.1j, 05.601w, 76.20.1q
ia
s
en
a

do
s

le

te
le
e
e

ie

s

os

s
er

on
ro

al-
the

g-
m
e

is
.
em
he

ht
he
ure
the
val-
as

l
wo
a-
mi-

ct
po-
ture
ur
te
ta-
ial
I. INTRODUCTION

The Brownian motion in bistable potentials is a cruc
factor in the thermally activated switching behavior of sy
tems which may exist in either of two stable states. We m
tion @1,2# a chemical reaction where two distinct chemic
species are separated by a~internal! potential barrier; the
reaction being modeled@1,2# by thermally activated diffu-
sion over the barrier. Another example is a fine single
main ferromagnetic particle with uniaxial anisotropy so po
sessing two stable magnetic states@2,3,6#. Orientation of the
magnetization of such a particle may undergo a reversal~i.e.,
cross the anisotropy internal potential barrier! due to thermal
agitation. The stochastic dynamics of the chemical prob
in the high damping~noninertial! limit will be governed by
the Smoluchowski equation in the reaction coordina
@1,4,5#. In the magnetic problem the inertia of the partic
plays no role; thus the relaxation is governed by a Fokk
Planck equation~FPE! in the space of orientations of th
magnetization only.

In both problems the time to cross the potential barr
~mean first passage time! in the high barrier~low tempera-
ture! limit may be obtained from the inverse of the smalle
nonvanishing eigenvaluel1 of the Sturm-Liouville equation
associated with the appropriate FPE. Thus the barrier cr
ing process in the high barrier limit is described by asingle
eigenmodeof the FPE.

Yet another quantity describing the relaxation proces
@1,3# the correlation timet which is defined as the area und
the curve of the normalized autocorrelation function~ACF!
C(t) of the appropriate dynamic quantity. The correlati
time, which is a global characterization of the relaxation p
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cess involved, contains contributions from all the eigenv
ues of the FPE and is related to the escape rate over
potential barrier. In the magnetic problem@3,6# t is the cor-
relation time of the normalized equilibrium ACF of the ma
netization of the particle. In the chemical reaction proble
@4,5# t is the correlation time of the normalized ACF of th
reaction coordinate~position!. The asymptotic behavior oft
is often similar tol1

21 showing that the relaxation process
dominated by the ‘‘long lived’’ barrier crossing mode
Marked differences occur, however, in the magnetic probl
if a strong external uniform bias field is applied along t
anisotropy axis. Heret will diverge exponentially from
l1

21 in the high anisotropy~low temperature! limit @3,6#.
Moreover, such behavior occurs at a critical valuehc of the
ratio h, i.e., bias field parameter-anisotropy barrier heig
parameter,far less than the value needed to destroy t
bistable nature of the potential. Thus in the low temperat
limit the relaxation process is no longer dominated by
slow decay mode associated with the barrier crossing at
ues ofh in excess of the critical value. The phenomenon w
first noted for the magnetic problem in Ref.@6# and later
explained by Garanin@3#. He showed that it is a natura
consequence of the depletion of the shallower of the t
potential wells by the uniform field. Thus at low temper
tures the fast modes in the deeper well may come to do
nate the relaxation.

In this paper we prove that the uniform bias force effe
always exists in relaxation in one-dimensional bistable
tentials and we assert that such an effect is a general fea
of relaxation in biased double-well potentials. We bolster o
conclusions by illustrating the effect for the two dispara
examples of relaxation in a biased 2-4 potential and orien
tional relaxation in a biased uniaxial anisotropy potent
given below.
4812 © 1997 The American Physical Society
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II. RELAXATIONAL DYNAMICS OF A BROWNIAN
PARTICLE IN A BIASED DOUBLE-WELL POTENTIAL

The one-dimensional noninertial translational Browni
motion of a particle in a double-well potentialV(x) is gov-
erned by the noninertial Fokker-Planck~Smoluchowski!
equation for the probability distribution functionW of the
position which is@1#

z
]

]t
W5

]

]x SW ]

]x
VD1kT

]2

]x2
W, ~1!

wherez is the friction coefficient,k is the Boltzmann con-
stant, andT is the absolute temperature.

The quantities of interest are the positional ACF

C~ t !5^x~0!x~ t !&02^x~0!&0
2, ~2!

where the symbol̂ &0 designates the equilibrium ensemb
average, and the correlation time

t5
1

C~0!
E
0

`

C~ t !dt. ~3!

A general equation for the correlation timet for a system
governed by Eq.~1! has been given by Risken„Ref. @1#, Eq.
~S9.14!…

t5
bz

Z@^x2&02^x&0#
E

2`

`

ebV~x!

3F E
2`

x

~x82^x&0!e
2bV~x8!dx8G2dx, ~4!

where

Z5E
2`

`

e2bV~x!dx, ^x&05
1

Z E
2`

`

xe2bV~x!dx,

^x2&05
1

Z E
2`

`

x2e2bV~x!dx, ~5!

andb5(kT)21.
For the purpose of our discussion we consider a bia

double-well potential

bV~x!5s@U~x!2hx#, ~6!

with a maximum atxB and minima atxA andxC and without
loss of generality we letV(xC).V(xA) ~see Fig. 1!.

At low temperatures~s@1! C(t) may be approximated by
two exponentials

C~ t !'Dwelle
2t/twell1DBe

2tl1, ~7!

wheretwell is the relaxation time in the deep well, and so h
a weak temperature dependence,l1 is the smallest eigen
value of the Sturm-Liouville equation associated with t
FPE and so has Arrhenius~exponential! temperature depen
dence, and correspondinglyDwell@DB . These two exponen
tials correspond tointrawell andoverbarrier relaxation pro-
cesses. According to Eq.~3!
d

s

t'
twellDwell1DBl1

21

Dwell1DB
'twell1DBl1

21/Dwell . ~8!

Recognizing that the partition functionZ is the sum of the
contributions due to the two potential wells and applying t
steepest descent method to the evaluation ofZ, we obtain

DB

Dwell
;
e2s@U~xC!2U~xA!2h~xA2xC!#

~122/p! SU9~xA!

U9~xC! D
1/2

3F 4p211
4

p SU9~xA!

U9~xC! D
1/2

1
U9~xA!

U9~xC!G . ~9!

According to the Kramers’ escape rate theory the inve
of the smallest nonvanishing eigenvalue has exponential
pendence on the barrier height@1#, viz.,

l1
21;es@U~xB!2U~xC!1h~xC2xB!#. ~10!

Thus

DBl1
21/Dwell;es@U~xB!1U~xA!22U~xC!1h~2xC2xB2xA!#.

~11!

Now the argument of the exponential, viz.,

s@U~xB!1U~xA!22U~xC!1h~2xC2xB2xA!#, ~12!

maychange its signat some critical value ofhc . This is the
crucial fact underpinning all that follows. Thus ifh,hc the
quantity DBl1

21/Dwell increases exponentiallyas the tem-
peratureT decreases and so completely determines the t
perature dependence of the correlation timet. If h.hc , on
the other hand, the quantityDBl1

21/Dwell decreases exponen
tially asT decreases, thust no longer has Arrhenius behav
ior. At this critical value of the bias parameter the relaxati
switches from being dominated by the behavior of the sm
est nonvanishing eigenvaluel1 to being dominated by the
fast relaxation processes in the deep well of the poten
because of the depletion of the upper~shallow! well at low
temperatures@3#. We shall now demonstrate that this beha
ior occurs at values ofh such that the double-well structur
of the potential still persists.

As a definite example consider the double-well potent

bV~x!5
s

4
@x424x22hx#, ~13!

FIG. 1. Double-well potential with local minima atxA and xC
and a local maximum atxB .
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wherex is a dimensionless coordinate andh is the bias pa-
rameter. Ath50 the potential Eq.~13! is symmetrical and
has a barrier atx50 where the potential has a maximu
with height relative to the minimum equal tos ~in dimen-
sionless units!.

The relaxational dynamics in this case are well kno
~see, e.g., Refs.@4,5#! and may be described as follows. Th
correlation time for all barrier height parameters is given
Eq. ~4! with ^x&050 @4#. In the low temperature~high bar-
rier! limit the ACF may be approximated by@4,5#

C~ t !'Dwelle
2t/twell1DBe

2tl1, ~14!

where

twell5bz~^x2&02^x&well
2 !, l1

21'
pbz^x2&0e

s

4&s
, ~15!

Dwell'^x&well
2 , DB'^x2&02^x&well

2 , ~16!

and^x&well is the average ofx in one of the wells~e.g., over
the range 0<x,`!. Thus t has the pronounced Arrheniu
behavior

t'l1
21 DB

Dwell
;es. ~17!

ForhÞ0 the potential becomes asymmetrical~see Fig. 2!.
Moreover, the double-well structure of the potential disa
pears at

h5hs516A2/27'4.354 65. ~18!

Now the correlation time is also given by the exact E
~4!. The results of the exact calculation oft are shown in Fig.
3. It is apparent thatt ceases to have Arrhenius behavior
values ofh that are considerably smaller than the critic
parameterhs of Eq. ~18!. Furthermore, one can see in Fig.
that for agiven shape of the potential~h5const! the behav-
ior of t may dramatically alter from exponentially increasin
to exponentially decreasing~see curve 4!. Applying the ap-
proximate treatment of Sec. II by means of Eq.~11! we see
that

FIG. 2. Potential 4bV(x)/s52hx24x21x4 from Eq. ~13! as
a function ofx for various values of the bias parameterh: 0 ~curve
1!, 1 ~curve 2!, 2 ~curve 3!, 3 ~curve 4!, and 16A2/27 ~curve 5!.
y

-

.

t
l

l1
21 DB

Dwell
;es@12~3/2& !h# ~19!

alters its behavior from exponential increase to exponen
decrease athc'2&/3'0.943.

III. ORIENTATIONAL RELAXATION
IN A BIASED POTENTIAL

The FPE for the probability distribution functionW of the
orientations of magnetization of an assembly of single
main ferromagnetic particles is@2#

2t0
]

]t
W5

b

sinq

]

]q S ~sinq!W
]

]q
VD

1
1

sinq

]

]q S ~sinq!
]

]q
WD , ~20!

wheret0 is a characteristic~Néel! relaxation time. We note
that the FPE~20! is similar to the noninertial Smoluchowsk
equation for the probability distribution functionW of the
orientations of a polar molecule in nematic liquid crystals
the mean field approximation@8#

In applications of linear response theory to dielectric a
magnetic relaxation the quantity of interest is the dipole m
ment equilibrium ACF@2#

C~ t !5^~cosq!~0!~cosq!~ t !&02^~cosq!~0!&0
2, ~21!

which describes the step-off linear response of polariza
and magnetization. The correlation timet for an arbitrary
axially symmetrical potentialV is @3,7#

t5
2t0

Z@^cos2q&02^cosq&0
2#
E

21

1

ebV~z!

3F E
21

z

~z82^cosq&0!e
2bV~z8!dz8G2 dz

12z2
, ~22!

where

FIG. 3. ln(t/bz) calculated from Eqs.~4! and~13! as a function
of s for various values ofh: 0 ~curve 1!, 0.5 ~curve 2!, 0.95~curve
3!, 1.2 ~curve 4!, 2 ~curve 5!, and 4.5~curve 6!.
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Z5E
21

1

e2bV~z!dz, ^cosq&05
1

Z E
21

1

ze2bV~z!dz,

^cos2q&05
1

Z E
21

1

z2e2bV~z!dz. ~23!

As an example consider the simplest uniaxial potentia

bV~z!52s~z212hz! ~z5cosq!, ~24!

wheres andh are the dimensionless anisotropy and exter
field parameters, respectively. Ath50 the potential Eq.~24!
is symmetrical and has a barrier atq5p/2, where the po-
tential has a maximum where the height relative to
minima atq50 andq5p is equal tos. For hÞ0 the po-
tential becomes asymmetrical and the double-well struc
disappears ath5hs51.

The relaxational dynamics have been investigated in
tail in Refs. @6,3# and may be described as follows. Th
correlation timet is given by the exact Eq.~22!. The results
of the exact calculation oft are shown in Fig. 4. It is appar
ent thatt ceases to display Arrhenius behavior at values
h that are considerably smaller than the critical valuehs , i.e.,
when the double-well structure of the potential is s
present. In the low temperature limit the ACF may be a
proximated by@3#

C~ t !'Dwelle
2t/twell1DBe

2tl1, ~25!

FIG. 4. ln(t/t0) calculated from Eqs.~22! and~24! as a function
of s for different values ofh: 0 ~curve 1!, 0.1~curve 2!, 0.17~curve
3!, 0.25 ~curve 4!, 0.5 ~curve 5!, and 1~curve 6!.
A
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-

where

twell'
t0

2s~11h!
,

l1
21't0p

1/2s23/2~113h!es~122h!1O~h2!,

DB /Dwell'16s2e24sh1O~h2!.

Thus

l1
21 DB

Dwell
;es~126h! ~26!

alters its behavior from exponential increase to exponen
decrease athc'1/6'0.166 67@3#, which is again consider-
ably smaller thanhs . This is in agreement with the originally
reported value ofhc @6#.

The above results may be used for the evaluation of
linear response of diverse physical systems. In particu
they can be applied with a small modification to the calcu
tion of the linear dielectric response of nematic liquid cry
tals and systems of polar and polarizable molecules i
strong dc bias field and to the corresponding magnetic
sponse of an assembly of single domain ferromagnetic
ticles. In all cases the longitudinal relaxation~dielectric and
magnetic, respectively! of these systems is governed by th
FPE with the uniaxial potential given by Eq.~24! and appro-
priate interpretation of the parameterst0 , h, ands ~for de-
tails see Refs.@8–12#!. Finally we remark that~on account of
the linear response theory! the bias field effect is of particula
significance for the linear alternating current~ac! response of
particles in a bistable potential. It appears that even fo
very small change inh near the critical value ofhc that there
will be a marked change in the ac response as the relaxa
switches from being dominated by the low-frequency barr
crossing mode to the high-frequency modes associated
the intrawell relaxation~e.g., Ref.@6#!.
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